Speed and Distance Using Encoders

Wheel Encoders

Two types of wheel encoders

Encoder Library Functions

The enable_encoder() library function is used to start a process which updates the transition count for the encoder specified. The encoder library functions are designed for sensors connected to (digital) ports 8-15. Every enabled encoder uses a lot of the processor -- so don't enable an encoder unless you are going to use it, and never put an enable statement inside of a loop.

```
enable_encoder(<port#>);
  /* turns on the specified encoder (which are plugged into digital
    ports 8-15). This should be done only once - never enable an
    already enabled encoder. If an encoder is not enabled
    read_encoder will always return 0. */
disable_encoder(<port#>)
  /* turns off the specified encoder */
reset_encoder(<port#>)
  /* sets the specified encoder value to 0 */
read_encoder(<port#>)
  /* returns an int that is the current value of the specified
  encoder */
```

Simple Encoder Program

```
void main(){
   int enc1, enc2;
   enable encoder(8); // turn on the encoders; sensors
                      // plugged into ports any of the
                      //digital ports
   enable_encoder(15);
  while(!b button())
      enc1=read encoder(8); /* read each encoder */
      enc2=read encoder(15); /* and show values
      printf("Enc1=%d Enc2=%d\n",enc1, enc2);
      sleep(0.1); /* wait a bit and do it again */
```

Mounting a slot sensor encoder

Carefully align sensor with encoder wheel

Optical Encoders

- The encoder sensor consists of a light reflectance sensor and a paper disc:
 - As the disc rotates, the reflectance sensor can read the light and dark areas on the disc.
 - This particular disk would give six counts per revolution (6 transitions from light to dark or dark to light)
 - Wheels with more partitions for more accurate control can be found on page 136 of Robot Explorations

Measuring Distance

 Divide the circumference of the wheel by the resolution of the encoder (number of clicks per distance moved).

Recording Speed

- Speed can be measured by recording the distance traveled in a certain amount of time
 - 6 counts per revolution
 - each revolution covers a certain distance (based on the size of the wheel and the gear ratio between the encoder disk and the wheel)
 - Speed is distance per unit time
 - On the library functions seconds () returns the elapsed time in seconds

Last Word on Encoders

- Every enabled encoder uses a lot of the HB's processor -- so don't enable an encoder unless you are going to use it, and never put an enable statement inside of a loop
- Just because you count an encoder does not mean that the robot moved that distance
 - tires slip on the ground (and tires slip on the wheels)
 - Legos bend, gears skip, etc...